Performance Optimization
DEPRECATED
This page is deprecated. For the latest documentation, please visit DeepWiki.
MAIF is designed for high-performance operations. This guide covers optimization techniques for maximum throughput and efficiency.
Performance Features
MAIF provides:
- Memory-Mapped I/O: Efficient file access
- Write Buffering: Batched writes for throughput
- Compression: Reduce storage and I/O
- Batch Processing: Process data efficiently
- Streaming: Handle large files
Memory-Mapped I/O
Enable memory mapping for large files:
python
from maif.core import MAIFEncoder
# Enable memory mapping
encoder = MAIFEncoder(
"large.maif",
agent_id="performance-agent",
enable_mmap=True
)
# Large write operations are more efficient
for i in range(10000):
encoder.add_text_block(f"Document {i}")
encoder.finalize()Block Storage with mmap
python
from maif.block_storage import BlockStorage
# Direct block access with memory mapping
storage = BlockStorage("large.maif", enable_mmap=True)
# Efficient random access
block = storage.get_block("block-id")Write Buffering
The encoder uses buffering for better performance:
python
from maif.core import MAIFEncoder
# Configure buffer size
encoder = MAIFEncoder(
"buffered.maif",
agent_id="buffered-agent",
buffer_size=128 * 1024 # 128KB buffer
)
# Writes are buffered automatically
for i in range(1000):
encoder.add_text_block(f"Item {i}")
# Buffer flushed on finalize
encoder.finalize()Compression
Enable compression to reduce file size and I/O:
python
from maif.core import MAIFEncoder
encoder = MAIFEncoder(
"compressed.maif",
agent_id="compressed-agent",
enable_compression=True
)
# Data is automatically compressed
encoder.add_text_block("Large document content...")
encoder.finalize()Compression Manager
python
from maif.compression_manager import CompressionManager
# Create compression manager
compression = CompressionManager()
# Compress data
compressed = compression.compress(large_data)
# Decompress when needed
original = compression.decompress(compressed)Embedding Compression
python
from maif_api import create_maif
maif = create_maif("embedding-agent")
# Compress large embedding sets
embeddings = [[0.1, 0.2, 0.3] for _ in range(10000)]
maif.add_embeddings(embeddings, model_name="bert", compress=True)
maif.save("compressed_embeddings.maif")Batch Processing
Process data in efficient batches:
python
from maif.batch_processor import BatchProcessor
# Create batch processor
processor = BatchProcessor(batch_size=100)
# Process items in batches
items = [f"document_{i}" for i in range(10000)]
for batch in processor.process(items):
# Each batch has up to 100 items
for item in batch:
process(item)Stream Batch Processing
python
from maif.batch_processor import StreamBatchProcessor
# For streaming data
processor = StreamBatchProcessor(
batch_size=100,
timeout=5.0 # Flush after 5 seconds
)
# Add items as they arrive
for item in data_stream:
processor.add(item)
if processor.is_ready():
batch = processor.get_batch()
process_batch(batch)
# Process remaining
final_batch = processor.flush()Parallel Processing
python
from maif.batch_processor import DistributedBatchProcessor
# Multi-worker processing
processor = DistributedBatchProcessor(
batch_size=1000,
num_workers=4
)
# Process with parallelism
results = processor.process_parallel(items)Streaming
For large files, use streaming operations:
python
from maif.streaming import MAIFStreamWriter, MAIFStreamReader
# Write incrementally
with MAIFStreamWriter("large.maif") as writer:
for i in range(100000):
writer.write_text_chunk(f"Document {i}")
# Read without loading entire file
with MAIFStreamReader("large.maif") as reader:
for block in reader.read_blocks():
process(block)Hot Buffer
For high-throughput caching:
python
from maif.hot_buffer import HotBuffer
# Create hot buffer
buffer = HotBuffer(max_size=1024 * 1024) # 1MB
# Cache frequently accessed data
buffer.put("key1", data1)
buffer.put("key2", data2)
# Fast retrieval
data = buffer.get("key1")Rate Limiting
Control throughput in production:
python
from maif.rate_limiter import RateLimiter, RateLimitConfig
# Configure rate limiting
config = RateLimitConfig(
requests_per_second=100,
burst_size=20
)
limiter = RateLimiter(config)
# Use rate limiter
with limiter:
perform_operation()Cost-Based Rate Limiting
python
from maif.rate_limiter import CostBasedRateLimiter
# Limit by cost
limiter = CostBasedRateLimiter(max_cost_per_hour=1000)
# Operations have different costs
limiter.track_cost(operation="write", cost=1)
limiter.track_cost(operation="search", cost=5)Metrics
Track performance metrics:
python
from maif.metrics_aggregator import (
MetricsAggregator,
initialize_metrics,
get_metrics
)
# Initialize metrics
metrics = initialize_metrics(namespace="my-app")
# Record metrics
metrics.record("write_latency", 0.05)
metrics.record("blocks_written", 100)
# Get aggregated metrics
summary = get_metrics()
print(f"Average latency: {summary['write_latency_avg']}")Cost Tracking
Track resource usage:
python
from maif.cost_tracker import (
CostTracker,
initialize_cost_tracking,
with_cost_tracking
)
# Initialize tracking
tracker = initialize_cost_tracking()
# Track operation costs
@with_cost_tracking
def expensive_operation():
# Operation code
pass
# Get cost summary
costs = tracker.get_summary()Performance Tips
1. Enable Memory Mapping for Large Files
python
encoder = MAIFEncoder("fast.maif", agent_id="fast", enable_mmap=True)2. Use Compression
python
encoder = MAIFEncoder("efficient.maif", agent_id="efficient", enable_compression=True)3. Batch Operations
python
# Don't write one at a time
for item in items:
encoder.add_text_block(item)
# Better: batch writes are efficient
encoder.add_text_block(large_content)4. Stream Large Files
python
# Don't load entire file
with MAIFStreamReader("huge.maif") as reader:
for block in reader.read_blocks():
process(block)5. Use Parallel Processing
python
from maif.batch_processor import DistributedBatchProcessor
processor = DistributedBatchProcessor(num_workers=4)
results = processor.process_parallel(items)Performance Benchmarks
Typical performance characteristics:
| Operation | Throughput | Latency |
|---|---|---|
| Write (text) | 100K blocks/sec | <1ms |
| Write (binary) | 400+ MB/sec | <5ms |
| Read (sequential) | 500+ MB/sec | <1ms |
| Search (semantic) | <50ms | - |
| Compression | 200+ MB/sec | <10ms |
Actual performance depends on hardware and configuration.
Complete Example
python
from maif.core import MAIFEncoder
from maif.batch_processor import BatchProcessor
from maif.metrics_aggregator import initialize_metrics
import time
# Initialize metrics
metrics = initialize_metrics()
# Create optimized encoder
encoder = MAIFEncoder(
"optimized.maif",
agent_id="optimized",
enable_mmap=True,
enable_compression=True,
buffer_size=256 * 1024
)
# Batch processor
processor = BatchProcessor(batch_size=500)
# Generate test data
documents = [f"Document {i} with content..." for i in range(10000)]
# Process in batches
start = time.time()
for batch in processor.process(documents):
for doc in batch:
encoder.add_text_block(doc)
encoder.finalize()
elapsed = time.time() - start
print(f"Processed {len(documents)} documents in {elapsed:.2f}s")
print(f"Throughput: {len(documents)/elapsed:.0f} docs/sec")Available Performance Components
| Component | Module | Purpose |
|---|---|---|
MAIFEncoder | maif.core | Create files (mmap, buffer options) |
MAIFStreamWriter | maif.streaming | Streaming writes |
MAIFStreamReader | maif.streaming | Streaming reads |
BatchProcessor | maif.batch_processor | Batch processing |
DistributedBatchProcessor | maif.batch_processor | Parallel processing |
CompressionManager | maif.compression_manager | Data compression |
HotBuffer | maif.hot_buffer | High-speed caching |
RateLimiter | maif.rate_limiter | Throughput control |
MetricsAggregator | maif.metrics_aggregator | Performance metrics |
CostTracker | maif.cost_tracker | Resource tracking |
Next Steps
- Streaming → - Real-time processing
- Architecture → - System design
- API Reference → - Complete API documentation